One Cyclic Codes over $\mathbb{F}_{p^k} + v\mathbb{F}_{p^k} + v^2\mathbb{F}_{p^k} + ... + v^r\mathbb{F}_{p^k}$

نویسنده

  • Ousmane Ndiaye
چکیده

In this paper, we investigate cyclic code over the ring Fpk + vFpk + v 2 Fpk + ...+ v r Fpk , where v = v, p a prime number, r > 1 and gcd(r, p) = 1, we prove as generalisation of [9] that these codes are principally generated, give generator polynomial and idempotent depending on idempotents over this ring as response to an open problem related in [11]. we also give a gray map and proprieties of the related dual code.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic codes over the ring $\mathbb{F}_p[u,v] / \langle u^k,v^2,uv-vu\rangle$

Let p be a prime number. In this paper, we discuss the structures of cyclic codes over the ring F p [u, v]/u k , v 2 , uv − vu. We find a unique set of generators for these codes. We also study the rank and the Hamming distance of these codes.

متن کامل

$(1-2u^k)$-constacyclic codes over $\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_+u^{3}\mathbb{F}_{p}+\dots+u^{k}\mathbb{F}_{p}$

Let $\mathbb{F}_p$ be a finite field and $u$ be an indeterminate. This article studies $(1-2u^k)$-constacyclic codes over the ring $\mathcal{R}=\mathbb{F}_p+u\mathbb{F}_p+u^2\mathbb{F}_p+u^{3}\mathbb{F}_{p}+\cdots+u^{k}\mathbb{F}_{p}$ where $u^{k+1}=u$. We illustrate the generator polynomials and investigate the structural properties of these codes via decomposition theorem.

متن کامل

$4$-Total prime cordial labeling of some cycle related graphs

Let $G$ be a $(p,q)$ graph. Let $f:V(G)to{1,2, ldots, k}$ be a map where $k in mathbb{N}$ and $k>1$. For each edge $uv$, assign the label $gcd(f(u),f(v))$. $f$ is called $k$-Total prime cordial labeling of $G$ if $left|t_{f}(i)-t_{f}(j)right|leq 1$, $i,j in {1,2, cdots,k}$ where $t_{f}(x)$ denotes the total number of vertices and the edges labelled with $x$. A graph with a $k$-total prime cordi...

متن کامل

Roman k-Tuple Domination in Graphs

For any integer $kgeq 1$ and any graph $G=(V,E)$ with minimum degree at least $k-1$‎, ‎we define a‎ ‎function $f:Vrightarrow {0,1,2}$ as a Roman $k$-tuple dominating‎ ‎function on $G$ if for any vertex $v$ with $f(v)=0$ there exist at least‎ ‎$k$ and for any vertex $v$ with $f(v)neq 0$ at least $k-1$ vertices in its neighborhood with $f(w)=2$‎. ‎The minimum weight of a Roman $k$-tuple dominatin...

متن کامل

Edge pair sum labeling of spider graph

An injective map f : E(G) → {±1, ±2, · · · , ±q} is said to be an edge pair sum labeling of a graph G(p, q) if the induced vertex function f*: V (G) → Z − {0} defined by f*(v) = (Sigma e∈Ev) f (e) is one-one, where Ev denotes the set of edges in G that are incident with a vetex v and f*(V (G)) is either of the form {±k1, ±k2, · · · , ±kp/2} or {±k1, ±k2, · · · , ±k(p−1)/2} U {k(p+1)/2} accordin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.01955  شماره 

صفحات  -

تاریخ انتشار 2015